TECHNICAL DATA

Optical System:

Paschen Runge mounting Spectral field: 190 to 800 nm

Focal length 500 mm

High luminosity Holographic grating with 1200 or 2700 grooves/mm $\,$

depending on application

Source:

Multi-frequency spark source.

Excitation parameters controlled by computer.

Software:

MLab software, operating in Windows environment is very easy to be used.

The operator can really use all the spectrometer's functions.

Some of the most important functions are listed:

Analysis

Automatic standardization

Printing and management of certificates

Network linking and remote control

Autodiagnosis

Portable PC

PC built-in included with touch screen management (option)

Power supply: 110/220 V AC 16 A 1 KW

Dimensions: W 52.5 cm, H 73.0 cm, D 50.0 cm

Weight: 55 Kg

Local Agent

GNR ANALYTICAL INSTRUMENTS GROUP

Sales Office: G.N.R. S.r.I. - Via Torino, 7 28010 Agrate Conturbia (NO) - Italy

Tel. +39 0322 882911 Fax +39 0322 882930

E-mail: gnrcomm@gnr.it - gnrtech@gnr.it - www.gnr.it

ANALYTICAL INSTRUMENTS GROUP

25 years of technology

The most advanced Rotating Disc Electrode Atomic Emission Spectrometer

GNR Analytical Instruments Group, active in the market for more than 25 years, thanks to its high expertise in the field produced several analytical instruments able to give the best solution to the different metallurgical needs.

GNR ROTROIL spectrometer is complaint to the ASTM D6595-00 Standard Test Method for determination of Wear Metals and Contaminants in used lubricating oils or used hydraulical fluids by Rotating Disc Electrode Atomic Emission Spectrometery.

The determination of debris in used oil is a key diagnostic method practiced in machine condition monitoring programs. The presence or increase in concentration of specific wear metals can be indicative of the early stages of wear if there are baseline concentration data for comparison. A marked increase in contaminant elements can be indicative of foreign materials in the lubricants, such as anti-freeze or sand, which may lead to wear or lubricant degradation. The test method identifies the metals and their concentration so that trends relative to time or distance can be established and corrective action can be taken prior to more serious or catastrophic failure.

Details of the inside of sample's chamber.

The ROTROIL spectrometer can be used in correlation with both ASTM norms and DoD JOAP for oil conditions monitoring and failure prevention procedure.

Typical application field varies from Military Forces, Airlines, Railways, Marine Fleets, Public and Private transportation companies, Mines, Refineries, Power Plants, Oil Plants, Oil recycler, Manufacturing plants, Commercial laboratories, Racing Team and whenever there is the needs for elemental analysis of of lubricating oils, transmission fluids, fuels, hydraulic fluids and greases for wear metals, contaminants, additives and corrosive impurities for preventive maintenance and reducing cost.

REPORTED 17 - JOHN											Pos	Element	Prog N°1	Prog N°2
Andre Modice Tentus Loga Configuration Anches Auto													WEAR METALS	ADDITIVES
	N I	Piotà					- Scan	ca	_				PPM	PPM
Concentracio		1 =					63/2 60:2	63/25/09 Contatore 594			1	Ag	0/900	
Canale	1 1	2	3	4	5	6	7	8	9	10	2	Al	0/900	
Fe	19.132	19.219	15.021	19867	20.727	18.790	20.510	20.349	20.039	19.716	3	В	0/900	900/5000
Cu	18.061	15.364	12,074	17.900	10.006	T8.132	18.9G	10.400	18.018	18.427	<u> </u>			,
AI .	18-901	15.900	10,900	18.507	19,679	19.153	20.052	19.374	10.953	19.378	4	Ba	0/900	900/5000
Mo Ca	19.415	13.326	15 564	20630 18152	21.379 19.580	19.557	22.007	21.524	20.971	20.356 19.298	5	Ca	0/900	900/5000
Si	18.337	13.291	15.455	19.490	20.126	19.387	20.770	20.242	20.039	19.948			,	300/3000
Ph	18.821	17.039	15.260	18.917	19.803	18.984	20.342	19.241	18.895	19.172	19.172 6	Cd	0/900	
Se	19.977	11.636	11.801	20.063	22.007	19518	21.451	20.452	21.048			Cr	0/900	
Zn	19 530	21.775	16,962	20747	20.723	10.520	20.851	21.164	21.343	19.413		CI	0/900	
Mi B	17,900	11.641	11.309	16.510 20.436	18521	19.7)7	18 902 20 917	17,366 20,716	16.995 20.560	18.123 20.056	8	Cu	0/900	
Ba	22.395	20 563	21.083	23422	24.753	21.470	24.667	24.127	23.287	22.852		-	0.4000	
Ca	17.556	17,326	17,175	18968	18.896	16.963	19.223	19.185	18.958	18 608	9	Fe	0/900	
K.	1.012	1.226	£ 671	1.323	0.680	1.097	0.949	1.32	1.189	0.948	10	Mg	0/900	900/5000
Li	0.000	1000	000.2	0.000	0.000	0.000	0.000	0.000	0.000	0.000			-,	300/3000
No	12,862	12.062	11,738	13364	13.020	14.232	13.964	12.700	12.966	14.223	11	Mn	0/900	
P	20:946	12.615	21.797	20.909	22.829	21.945	24.043	22.379	21 179	21.124	12	Мо	0/900	900/5000
											13	Na	0/900	900/5000
											14	Ni	0/900	
											15	Р	0/900	900/5000
											16	Pb	0/900	
											17	Si	0/900	
											18	Sn	0/900	
											19	Ti	0/900	
											20	V	0/900	
											21	Zn	0/900	900/5000

Above a typical screenshot of analysis taken by RTL spectrometer using oil program at 20 ppm level, possibility to print complete analysis report.

ROTROIL is the latest generation and most advanced version of the traditional Rotrode Emission Spectrometer, thanks to the new compact design it's a very strong and reliable unit, able to be moved and transported to different locations where the analysis must be taken. The new electronic board based on CCD detector improves the easiness and shorten the standard procedure to set up the unit and it allows simple future upgrade possibility with new elements and programs.

The optic chamber of 500 mm focal length based on Paschen-Runge mounting represents the best solution to obtain the better resolution and maximum intensity in order to have the best performances achievable with Rotating Disc Electrode Spectrometry.

Example of typical analytical programs for the analysis and evaluation of Additive and Wear Metals.

Possibility to extend upon request the application field with additional elements as K, As, Be, Bi, Ce, Co, In, La, Li, Sr, W, Y and other. Key features:

Rugged construction

NO Gas required

NO Sample preparation

NO special skills required

Analysis in 30 seconds

Easy upgrade possibility

PC built-in included with touch screen management (option)